
Modeling COVID-19 Case Counts with LSTM
Networks

Brandon Voigt

February 2021

1 Introduction

The goal of this project was to model COVID-19 case counts by using long
short-term memory (LSTM) networks, which are a type of recurrent neural
network (RNN). The dataset used to train the model included the number
of confirmed COVID-19 cases per day for each state in the United States
through November 2020. The last 14 days in the dataset were set aside as
a test set, in order to evaluate the predictive power of the model over a
two-week window.

The first section of this paper reviews the theory behind LSTM networks,
beginning with the basics of artificial neural networks, then explaining the
concepts of an RNN and how the LSTM architecture is an enhancement of
the simple RNN architecture. Next, the dataset used for the project and
the chosen model are described in detail. Finally, the results are compared
to several other time series prediction methods, including a naive forecast,
theta forecast, and ARIMA forecast. The LSTM method performs similarly
to the theta method and outperforms the other forecasting methods.

2 Background

An LSTM network is one type of artificial neural network, which is a general
class of machine learning models that are loosely inspired by the systems of
the human brain. The two basic components of an artificial neural network
are nodes that modify an input, and the connections between these nodes [1].

1



Figure 1: A feedforward artificial neural network with one hidden layer.
(Source: en.wikipedia.org)

By analogy, the nodes are like biological neurons that produce a signal, and
the connections between nodes are like synapses that pass this signal to other
neurons in the network. The architecture of this model can be represented
as a directed graph [2], as in Figure 1. Typically, it is organized as a series
of layers of nodes, where each layer is only connected to the layers that are
adjacent to it. The overall flow of data includes an input layer, one or more
“hidden” layers, and a final output layer [3].

Each connection between layers of the network is assigned a weight, such
that the linear combination of the outputs from one layer becomes the input
to a node in the next layer. The node itself applies a function, which is called
an activation function and is usually nonlinear, to this input and gets a new
output. This occurs for each node in the layer, and then the process begins
again as the outputs from each node are combined and fed to the next layer
of the network. The goal of training a neural network, therefore, is to find
the weights that produce the most accurate model [4].

Neural networks can be characterized as either feedforward or recurrent.
In a feedforward network, each layer is only connected to the following layer,

2



Figure 2: An unfolded recurrent neural network. (Source: en.wikipedia.org)

so the model forms a directed acyclic graph and information flows in one
direction from the input layer to the output layer. On the other hand, a
recurrent network allows neurons to connect to themselves or to previous
layers [5]. One basic RNN structure is called an Elman network, which is also
known as a vanilla RNN or simple RNN. This structure includes one recurrent
cell, a node that connects to itself. As shown in Figure 2, the system can be
“unrolled” such that its structure is similar to that of a feedforward network,
and each layer of the unrolled network corresponds to one time step in the
recurrent cell [6]. This gives some intuition into why RNNs are well-suited
to time series and sequence prediction problems – their structure has an
inherent temporal component that aligns with many real-world applications
[5].

Following the notation in [6], the hidden state h[t] and output y[t] at
timestep t for an Elman RNN can be represented by the following equations:

h[t] = f (W i(x[t] + bi) + W h(h[t− 1] + bh))

y[t] = g (W o(h[t] + bo))

where f(·) is the activation function of the hidden node; g(·) is the function
that transforms the output of the hidden layer to the final output; W i,W h,
and W o are weight matrices; x[t] is the input x at timestep t; and bi, bh, and
bo are bias vectors. In short, the hidden state at a given timestep is a function
of both the input at that timestep and itself at the previous timestep, while
the output is a function of the hidden state at that timestep.

The most common algorithm for training an RNN is called backpropa-
gation through time [3] [7]. At a high level, this algorithm optimizes the

3



weights of the network by repeatedly applying the chain rule. The process
relies on the idea of unrolling an RNN, since an unrolled RNN is equivalent to
a feedforward network when a finite number of timesteps are considered. A
feedforward network forms a directed acyclic graph, which makes it possible
to update the weights recursively based on the error of the network, moving
backwards in time [7].

However, applications of the simple RNN frequently encounter an issue
called the “vanishing error” or “vanishing gradient” problem. The backprop-
agated error either grows or shrinks with each timestep, so when the weights
are updated over many timesteps, they either oscillate back and forth or
change extremely slowly. In practice, this means that a simple RNN typi-
cally cannot bridge more than 10 timesteps [3]. A proof that this issue will
occur regardless of the large-signal stability of the network can be found in
[7].

The LSTM architecture was first proposed in 1997 by Hochreiter and
Schmidhuber [8] as a way to counteract the vanishing gradient issue. It
enforces a constant error flow by using a system of gates within the recur-
rent cell, including a “forget gate,” “update gate,” and “output gate.” The
equations for an LSTM cell can be written as:

forget gate : σf [t] = σ(W fx[t] + Rfy[t− 1] + bf )

candidate state : h̃[t] = g1(W hx[t] + Rhy[t− 1] + bh)

update gate : σu[t] = σ(W ux[t] + Ruy[t− 1] + bu)

cell state : h[t] = σu[t] � h̃[t] + σf [t] � h[t− 1]

output gate : σo[t] = σ(W ox[t] + Roy[t− 1] + bo)

output : y[t] = σo[t] � g2(h[t])

again following the notation in [6], where x[t] is the input vector at time t;
W f ,W h,W u, and W o are weight matrices applied to the input; Rf ,Rh,Ru,
and Ro are weight matrices applied to the previous output; bf , bh, bu, and
bo are bias vectors; σ(·) is the sigmoid function; g1(·) and g2(·) are nonlinear
activation functions, typically the hyperbolic tangent; and � denotes the
Hadamard (elementwise) product. See Figure 3 for a diagram of the overall
architecture. This system of gates controls the flow of information in and
out of the node, and scales the error appropriately. The end result is that
an LSTM network can bridge much larger time lags, even more than 1000
timesteps [8].

4



Figure 3: An LSTM cell with forget gate, input gate, and output gate.
(Source: researchgate.net)

The LSTM network can be extended further by using multiple LSTM
cells, which is known as a deep LSTM or stacked LSTM, as shown in Figure.
Deep feedforward networks, which use an architecture with many hidden
layers, have been highly successful in fields such as computer vision and
machine translation [9], and many of the same concepts can be applied to
RNNs. For example, the stacked LSTM structure was shown to achieve state-
of-the-art results on TIMIT, a speech recognition dataset [10]. It has also
been applied to biological time series [11] [12], where it again achieved better
empirical results than other methods. For this project, a stacked LSTM
architecture was chosen, which will be described in more detail in the next
section.

3 Project Details

The dataset used for this project was collected by BroadStreet Health as
part of the COVID-19 Data Project [13]. In its original format, the dataset
included the cumulative number of confirmed COVID-19 cases per day for
each county in the United States. The first step in the project was to aggre-
gate these county-level totals to the state level, and to difference the dataset
to get the number of new cases per day rather than the cumulative total.
The most recent 14 days of data, comprising the last two weeks of November
2020, were set aside as a test set. The overall goal, then, was to build a
model that would accurately predict the number of new cases in each state
over a 14-day period.

5



Figure 4: A stacked LSTM network. (Source: semanticscholar.org)

The training dataset included 299 days’ worth of data for 52 states and
territories (including the District of Columbia and Puerto Rico). This data
was transformed into sequences of 180 days to be used as input to the LSTM
network, with the number of new cases in the next day as the output. In
other words, the model was trained to predict the number of new cases
based on the previous 180 days. The 14-day predictions used to evaluate the
model were generated recursively, by predicting one day at a time and then
incorporating this prediction into the input for the following day.

The chosen architecture was a stacked LSTM network. In comparison to
Figure 4, which has 3 layers of LSTM cells, this network included 2 layers of
LSTM cells, followed by a fully connected layer. An important consideration
when building the model was to prevent overfitting. The number of features
in the hidden state h was chosen to be 5, which resulted in better predictions
than a larger number of features. Another method that was used to prevent
overfitting was “dropout,” in which a random subset of nodes and their
connections is dropped from the model during training [14]. In this case, a
dropout rate of 0.25 was used in between the two LSTM layers. Although
other, more complex models were considered, most of them seemed to overfit
and did not achieve better prediction accuracy.

6



Figure 5: Comparison of the total mean-squared error on the test set for
different forecasting methods.

4 Results

To evaluate the accuracy of the stacked LSTM model, we can compare its pre-
diction accuracy to that of other forecasting methods. Three other methods
were chosen: a naive forecaster that simply predicted the value of the most
recent observation, an autoregressive integrated moving average (ARIMA)
forecaster, and a theta forecaster. The results are shown in Figure 5. Since
the process of training an LSTM or other neural network introduces random-
ness, the LSTM network was trained 10 times in a row; its best, worst, and
average performance are shown. Although the best LSTM outperformed the
theta forecaster, its average performance was slightly worse. On the other
hand, all 10 trials of the LSTM network achieved better predictions than the
naive and ARIMA forecasters.

Although the LSTM model achieved reasonably accurate results, we can
see that it did not outperform the simpler theta method for forecasting.
This model might benefit from more training data. It is also possible that a
different architecture incorporating an LSTM cell could result in better pre-
dictions. One limitation of the LSTM approach, and the other methods used

7



for comparison, is that they are not domain-specific. A model that is specifi-
cally designed for epidemiology might work better in this case. Nevertheless,
despite the limitations of this approach, it shows that LSTM networks are
a viable model for time series prediction. With more fine-tuning, it may be
possible to achieve state-of-the-art results with an LSTM-based architecture.

References

[1] Grossi, Enzo, and Massimo Buscema. “Introduction to Artificial Neural
Networks.” European Journal of Gastroenterology & Hepatology 19, No. 12
(2007): 1046–54. https://doi.org/10.1097/meg.0b013e3282f198a0

[2] Dongare, A.D., R.R. Kharde, and Amit D. Kachare. “Introduction to
Artificial Neural Network.” International Journal of Engineering and In-
novative Technology Volume 2, Issue 1 (2012).

[3] Staudemeyer, Ralf C., and Eric Rothstein Morris. “Understanding LSTM:
a tutorial into Long Short-Term Memory Recurrent Neural Networks”
(2019). https://arxiv.org/abs/1909.09586

[4] Sordo, Margarita. “Introduction to Neural Networks in Healthcare”
(2002). https://www.researchgate.net/publication/228820949

[5] Hewamalage, Hansika, Christoph Bergmeir, and Kasun Bandara. “Re-
current Neural Networks for Time Series Forecasting: Current Status and
Future Directions.” International Journal of Forecasting 37, No. 1 (2021):
388–427. https://doi.org/10.1016/j.ijforecast.2020.06.008

[6] Bianchi, Filippo Maria, Enrico Maiorino, Michael C. Kampffmeyer, An-
tonello Rizzi, and Robert Jenssen. Recurrent Neural Networks for Short-
Term Load Forecasting An Overview and Comparative Analysis. Cham:
Springer International Publishing (2017).

[7] Sherstinsky, Alex. “Fundamentals of Recurrent Neural Network (RNN)
and Long Short-Term Memory (LSTM) Network.” Physica D: Nonlinear
Phenomena 404 (2020). https://doi.org/10.1016/j.physd.2019.132306

[8] Hochreiter, Sepp, and Jürgen Schmidhuber. “Long Short-
Term Memory.” Neural Computation 9, No. 8 (1997): 1735–80.
https://doi.org/10.1162/neco.1997.9.8.1735

8



[9] Wang, Haohan, and Bhiksha Raj. “On the Origin of Deep Learning”
(2017). https://arxiv.org/abs/1702.07800

[10] Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton.
“Speech Recognition with Deep Recurrent Neural Networks” (2013).
https://arxiv.org/abs/1303.5778

[11] Malhotra, Pankaj, Lovekesh Vig, Gautam Shroff,
and Puneet Agarwal. “Long Short Term Memory Net-
works for Anomaly Detection in Time Series” (2015).
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf

[12] Prasad, Sharat C., and Piyush Prasad. “Deep Recurrent Neural Net-
works for Time Series Prediction” (2014). https://arxiv.org/abs/1407.5949

[13] “COVID-19 Data Project.” BroadStreet Health (2021).
http://covid19dataproject.org/data

[14] Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting.” Journal of Machine Learning Research 15
(2014) 1929-1958. https://jmlr.org/papers/v15/srivastava14a.html

9


